Practice 3-8

Finding and Estimating Square Roots

Tell whether each expression is rational or irrational.

1.
$$-\sqrt{64}$$

2.
$$\sqrt{1600}$$

3.
$$\pm \sqrt{160}$$

4.
$$\sqrt{144}$$

5.
$$\sqrt{125}$$

6.
$$-\sqrt{340}$$

7.
$$\sqrt{1.96}$$

8.
$$-\sqrt{0.09}$$

Use a calculator to find each square root to the nearest hundredth.

9.
$$\sqrt{20}$$

10.
$$\sqrt{73}$$

11.
$$-\sqrt{38}$$

12.
$$\sqrt{130}$$

13.
$$\sqrt{149.3}$$

14.
$$-\sqrt{8.7}$$

15.
$$\sqrt{213.8}$$

16.
$$-\sqrt{320.7}$$

17.
$$\sqrt{113.9}$$

18.
$$-\sqrt{840.6}$$

19.
$$-\sqrt{1348.9}$$

20.
$$\sqrt{928.2}$$

Simplify each expression.

21.
$$\sqrt{49}$$

22.
$$-\sqrt{2.25}$$

23.
$$\sqrt{\frac{1}{16}}$$

24.
$$\sqrt{400}$$

25.
$$\sqrt{6.25}$$

26.
$$\pm \sqrt{\frac{36}{25}}$$

27.
$$\sqrt{196}$$

28.
$$\sqrt{2.56}$$

29.
$$\sqrt{0.25}$$

30.
$$\pm \sqrt{\frac{9}{100}}$$

31.
$$\sqrt{576}$$

32.
$$\pm \sqrt{\frac{121}{36}}$$

33.
$$\sqrt{1600}$$

34.
$$-\sqrt{0.04}$$

35.
$$\sqrt{2500}$$

36.
$$\sqrt{4.41}$$

Between what two consecutive integers is each square root?

37.
$$\sqrt{40}$$

38.
$$\sqrt{139}$$

39.
$$-\sqrt{75}$$

40.
$$\sqrt{93}$$

41.
$$-\sqrt{105.6}$$

42.
$$-\sqrt{173.2}$$

43.
$$\sqrt{1123.7}$$

44.
$$\sqrt{216.9}$$

Solve the following problems. Round to the nearest tenth if necessary.

45. You are to put a metal brace inside a square shipping container. The formula $d = \sqrt{2x^2}$ gives the length of the metal brace, where x is the length of the side of the container. Find the length of the brace for each container side length.

a.
$$x = 3 \, \text{ft}$$

b.
$$x = 4.5 \text{ ft}$$

c.
$$x = 5 \, \text{ft}$$

d.
$$x = 8 \, \text{ft}$$

46. You are designing a cone-shaped storage container. Use the formula $r = \sqrt{\frac{3V}{\pi h}}$ to find the radius of the storage container. Find the radius when V = 10,000 ft³ and h = 10 ft.