Function Rules, Tables, and Graphs

Practice 5-3

Model each rule with a table of values and a graph.

- **1.** f(x) = x + 1**2.** f(x) = 2x**3.** f(x) = 3x - 2**5.** $f(x) = \frac{1}{2}x$ **6.** $f(x) = -\frac{2}{3}x + 1$ **4.** $f(x) = \frac{3}{2}x - 2$ **8.** $f(x) = -x^2 + 2$ 7. $f(x) = x^2 + 1$ **9.** f(x) = x - 3
- **10.** Suppose a van gets 22 mi/gal. The distance traveled D(g) is a function of the gallons of gas used.
 - **a.** Use the rule D(g) = 22g to make a table of values and then a graph.

- **b.** How far did the van travel if it used 10.5 gallons of gas?
- **c.** Should the points of the graph be connected by a line? Explain.
- **11.** The admission to a fairgrounds is \$3.00 per vehicle plus \$.50 per passenger. The total admission is a function of the number of passengers.
 - **a.** Use the rule T(n) = 3 + 0.50n to make a table of values and then a graph.
 - **b**. What is the admission for a car with six people in it?
 - **c**. Should the points of the graph be connected by a line? Explain.

Graph each function.

12. $f(x) = 4x + 2$	13. $f(x) = -2x $	14. $f(x) = -3x + 7$
15. $f(x) = - x - 1$	16. $f(x) = 8 - \frac{3}{4}x$	17. $f(x) = \frac{2}{3}x - 7$
18. $f(x) = -\frac{2}{3}x + 6$	19. $f(x) = x^2 - 2x + 1$	20. $f(x) = -\frac{1}{2}x + 3$
21. $y = -x^2 + 1$	22. $y = 9 - x^2$	23. $y = 2x^2 + x - 2$

Make a table of values for each graph.

