Practice 8-4

More Multiplication Properties of Exponents

Simplify each expression.

1.
$$(4a^5)^3$$

4.
$$(x^5)^2$$

7.
$$x^4 \cdot (x^4)^3$$

10.
$$(a^4)^{-5} \cdot a^{13}$$

13.
$$(d^2)^{-4}$$

16.
$$(12b^{-2})^2$$

19.
$$(y^6)^{-3} \cdot y^{21}$$

22.
$$(a^3)^6$$

25.
$$(5a^3b^5)^4$$

28.
$$a^{-4} \cdot (a^4b^3)^2$$

2.
$$(2^{-3})^4$$

5.
$$2^5 \cdot (2^4)^2$$

8.
$$(x^5y^3)^3(xy^5)^2$$

11.
$$(3f^4g^{-3})^3(f^2g^{-2})^{-1}$$

14.
$$(a^3b^4)^{-2}(a^{-3}b^{-5})^{-4}$$

17.
$$(m^{-5})^{-3}$$

20.
$$n^6 \cdot (n^{-2})^5$$

23.
$$b^{-9} \cdot (b^2)^4$$

26.
$$(b^{-3})^6$$

29.
$$(x^4y)^3$$

3.
$$(m^{-3}n^4)^{-4}$$

6.
$$(4x^4)^3(2xy^3)^2$$

9.
$$(5^2)^2$$

12.
$$x^3 \cdot (x^3)^5$$

15.
$$(x^2y)^4$$

18.
$$(x^{-4})^5(x^3y^2)^5$$

21.
$$(m^5)^{-3}(m^4n^5)^4$$

24.
$$(4^{-1}s^3)^{-2}$$

27.
$$(y^6)^3$$

30.
$$d^3 \cdot (d^2)^5$$

Simplify. Write each answer in scientific notation.

31.
$$10^{-9} \cdot (2 \times 10^2)^2$$

34.
$$(9 \times 10^7)^2$$

37.
$$(5 \times 10^5)^4$$

40.
$$(3 \times 10^5)^4$$

43.
$$10^5 \cdot (8 \times 10^7)^3$$

32.
$$(3 \times 10^{-6})^3$$

35.
$$10^{-3} \cdot (2 \times 10^3)^5$$

38.
$$(2 \times 10^{-3})^3$$

41.
$$(4 \times 10^8)^{-3}$$

44.
$$(10^2)^3(6 \times 10^{-3})^3$$

33.
$$10^4 \cdot (4 \times 10^6)^3$$

36.
$$(7 \times 10^5)^3$$

39.
$$(5 \times 10^2)^{-3}$$

42.
$$(1 \times 10^{-5})^{-5}$$

45.
$$10^7 \cdot (2 \times 10^2)^4$$

- **46.** The kinetic energy, in joules, of a moving object is found by using the formula $E = \frac{1}{2}mv^2$, where m is the mass and v is the speed of the object. The mass of a car is 1.59×10^3 kg. The car is traveling at 2.7×10^1 m/s. What is the kinetic energy of the car?
- **47.** The moon is shaped somewhat like a sphere. The surface area of the moon is found by using the formula $S = 12.56r^2$. What is the surface area of the moon if the radius is 1.08×10^3 mi?
- **48.** Because of a record corn harvest, excess corn is stored on the ground in a pile. The pile is shaped like a cone. The height of the pile is 25 ft, and the radius of the pile is 1.2×10^2 ft. Use the formula $V = \frac{1}{3}\pi r^2 h$ to find the volume.
- **49.** Suppose the distance in feet that an object travels in t seconds is given by the formula $d = 64t^2$. How far would the object travel after 1.5×10^3 seconds?