Practice 10-6

Using the Quadratic Formula

Use the quadratic formula to solve each equation. If the equation has no real solutions, write *no real solutions*. If necessary, round to the nearest hundredth.

1.
$$x^2 + 8x + 5 = 0$$

4.
$$a^2 - 3a - 154 = 0$$

7.
$$r^2 - 35r + 70 = 0$$

10.
$$4n^2 - 81 = 0$$

13.
$$6w^2 - 23w + 7 = 0$$

16.
$$x^2 + 5x - 90 = 0$$

19.
$$6h^2 + 77h - 13 = 0$$

22.
$$27f^2 = 12$$

25.
$$a^2 - 2a - 360 = 0$$

28.
$$4x^2 + 7x - 9 = 0$$

31.
$$m^2 - 40m + 100 = 0$$

34.
$$4d^2 + 29d - 60 = 0$$

37.
$$14x^2 = 56$$

40.
$$2v^2 = 39v - 17$$

43.
$$8h^2 - 38h + 9 = 0$$

46.
$$x^2 + 3x + 8 = 0$$

49.
$$4s^2 + 8s = 221$$

2.
$$x^2 - 36 = 0$$

5.
$$4p^2 - 12p - 91 = 0$$

8.
$$v^2 + 6v - 247 = 0$$

11.
$$x^2 + 13x + 30 = 0$$

14.
$$4x^2 + 33x = 27$$

17.
$$5b^2 - 20 = 0$$

20.
$$5y^2 = 17y + 12$$

23.
$$4x^2 - 52x + 133 = 0$$

26.
$$x^2 + 10x + 40 = 0$$

29.
$$2c^2 - 39c + 135 = 0$$

32.
$$8x^2 + 25x + 19 = 0$$

35.
$$4z^2 + 43z + 108 = 0$$

38.
$$32x^2 - 18 = 0$$

41.
$$5a^2 - 9a + 5 = 0$$

44.
$$20x^2 = 245$$

47.
$$6m^2 - 13m = 19$$

50.
$$6p^2 + 25p - 119 = 0$$

3.
$$d^2 - 4d - 96 = 0$$

6.
$$5m^2 + 9m = 126$$

9.
$$x^2 + 12x - 40 = 0$$

12.
$$a^2 - a = 132$$

15.
$$7s^2 - 7 = 0$$

18.
$$4x^2 - 3x + 6 = 0$$

21.
$$g^2 - 15g = 54$$

24.
$$x^2 + 36x + 60 = 0$$

27.
$$t^2 - 10t = 39$$

30.
$$4x^2 + 33x + 340 = 0$$

33.
$$36w^2 - 289 = 0$$

36.
$$3x^2 - 19x + 40 = 0$$

39.
$$r^2 + r - 650 = 0$$

42.
$$x^2 = 9x + 120$$

45.
$$9h^2 - 72h = -119$$

48.
$$9x^2 - 81 = 0$$

51.
$$2s^2 - 59s + 17 = 0$$

- **52.** A rectangular painting has dimensions x and x + 10. The painting is in a frame 2 in. wide. The total area of the picture and the frame is 900 in.². What are the dimensions of the painting?
- **53.** A ball is thrown upward from a height of 15 ft with an inital upward velocity of 5 ft/s. Use the formula $h = -16t^2 + vt + s$ to find how long it will take for the ball to hit the ground.
- **54.** Your community wants to put a square fountain in a park. Around the fountain will be a sidewalk that is 3.5 ft wide. The total area that the fountain and sidewalk can be is 700 ft². What are the dimensions of the fountain?
- **55.** The Garys have a triangular pennant of area 420 in.² flying from the flagpole in their yard. The height of the triangle is 10 in. less than 5 times the base of the triangle. What are the dimensions of the pennant?